

Typical Features

- ◆ Wide input voltage range 4:1
- ◆ Efficiency up to 90%
- ◆ Low no-load power consumption
- ◆ Operating temperature from -40°C to +105°C
- ◆ High isolation voltage 1500VDC (input-output) & 1500VDC (input-case)
- ◆ Input under voltage protection, output over voltage, short circuit, over current & over temp protections
- ◆ Standard 1/4 brick size

ZCD150-48S48A is a high-performance 1/4 Brice size modular DC-DC converter with the rated input voltage 48VDC (full range from 18V to 75VDC), regulated single output 48V/150W without minimum load limit. It has the advantage of high isolation voltage, operating temperature up to 105°C Max; with the input under voltage protection, output over current, over voltage, over temperature and short circuit protections, input ON/OFF control, output voltage distal end compensation and output voltage Trim, etc.

Typical Product List

Part No.	Input voltage range (VDC)	Output power (W)	Output voltage (VDC)	Output current (A)	Ripple & Noise (mVp-p)	Full load efficiency (%) Min/Typ.	Remarks
ZCD150-48S48AC	18 - 75	150	48	3.2	480	88/90	Standard Positive logic
ZCD150-48S48AN							Standard Negative logic
ZCD150-48S48AC-H							Heatsink Positive logic
ZCD150-48S48AN-H							Heatsink Negative logic

Input Specifications

Item	Operating conditions	Min.	Typ.	Max.	Unit
Max input current	Input voltage 18V, full load	--	--	11	A
No load input current	Rated input voltage	--	--	20	mA
Input Inrush voltage (1sec. max.)	The unit could be permanently damaged by input over this Voltage	-0.7	--	80	
Start-up voltage		--	--	18	VDC
Input under voltage protection	With No-load (The over current protection will work in advance at full load)	--	--	16	
ON/OFF Control (CNT)	Positive logic: CNT no connection or connected to 3.5-15V to turn ON, connected to 0-1.2V to turn OFF the converter				Reference voltage -Vin
	Negative logic: CNT no connection or connected to 3.5-15V to turn OFF, connected to 0-1.2V to turn ON the converter				

Output Specifications

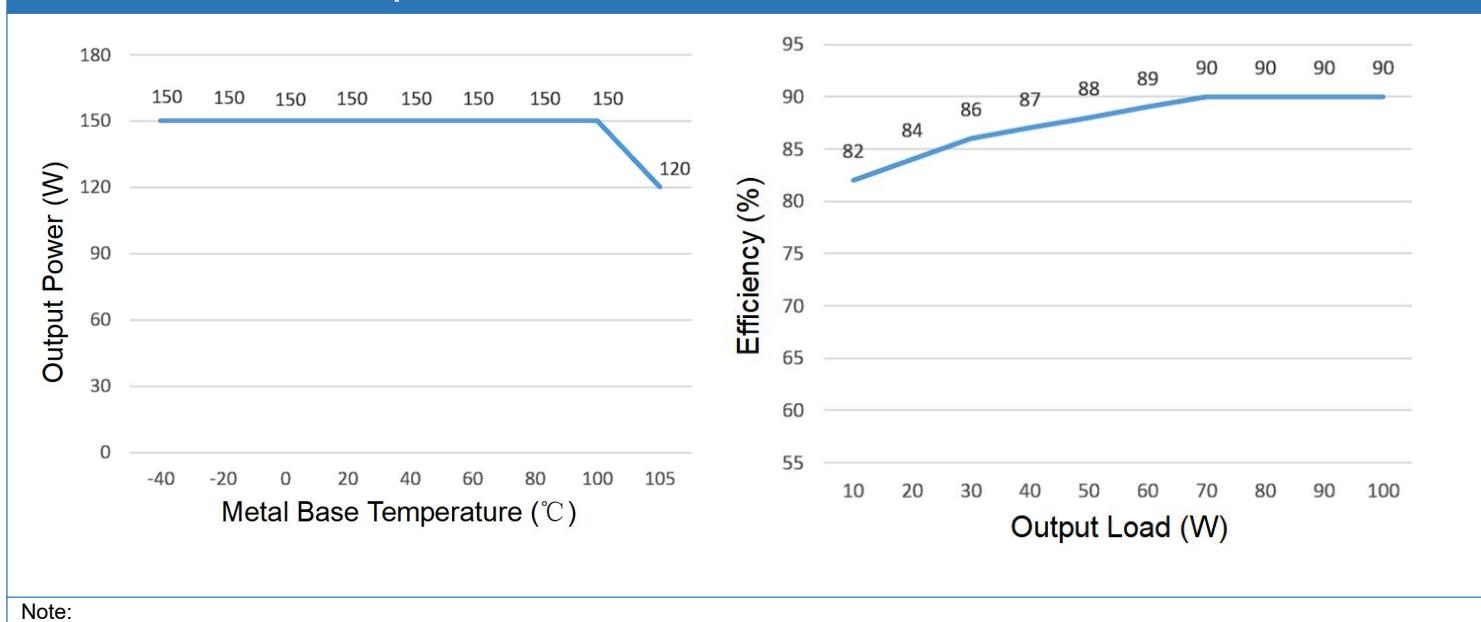
Item	Operating conditions	Min.	Typ.	Max.	Unit
Output voltage accuracy	Nominal input voltage, 0%-100% load	--	±0.5	±1.0	%
Line regulation	Full load, input voltage from low to high	--	±0.2	±0.5	
Load regulation	Nominal input voltage, 10%-100% load	--	±0.2	±0.5	
Transient recovery time	25% load step change (step rate 1A/50uS)	--	200	250	uS
Transient response deviation		-5	--	+5	%
Temperature drift coefficient	Full load	-0.02	--	+0.02	%/°C
Ripple & Noise	20M bandwidth, with external capacitor >470uF	--	240	480	mVp-p
Output voltage adjustment (TRIM)		-20	--	+10	%
Output voltage distal end compensation (Sense)		--	--	5	%
Over temperature protection	Maximum temperature of the metal base	105	115	125	°C
Over voltage protection		125	--	140	%
Over current protection		3.4	--	4.4	A
Short circuit protection		Hiccup, continuous, self-recovery			

General Specifications

Item	Operating conditions	Min.	Typ.	Max.	Unit
Isolation voltage	I/P-O/P	Test 1min, leakage current <3mA	1500	--	--
	I/P-Case	Test 1min, leakage current <3mA	1500	--	--
	O/P-Case	Test 1min, leakage current <3mA	500	--	--
Insulation resistance	I/P-O/P	@ 500VDC	100	--	--
Switching frequency			--	210	--
MTBF			150	--	--
					K hours

Environmental characteristics

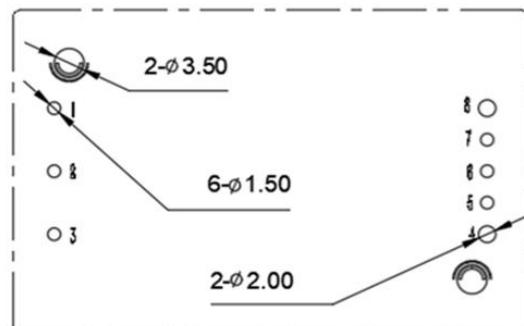
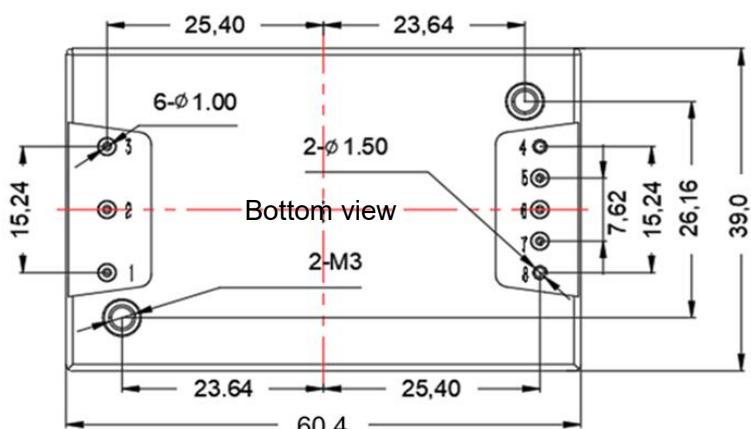
Item	Operating conditions	Min.	Typ.	Max.	Unit	
Operating temperature	Refer to the temperature derating graph	-40	--	+105	°C	
Storage humidity	No condensing	5	--	95	%RH	
Storage temperature		-40	--	+125	°C	
Pin soldering temperature	1.5mm from the case, soldering time <1.5S	--	--	+350		
Cooling requirement		EN60068-2-1				
Dry heat requirement		EN60068-2-2				
Damp heat requirement		EN60068-2-30				
Shock and vibration		IEC/EN 61373 C1/Body Mounted Class B				

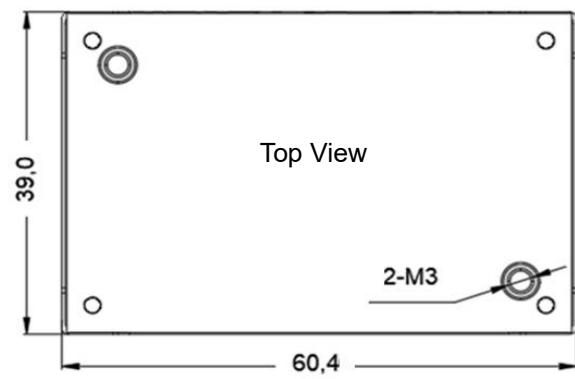
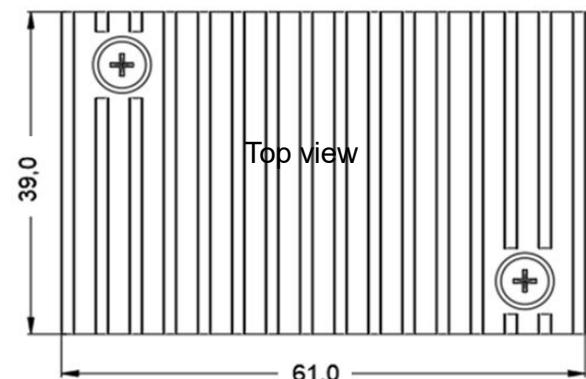
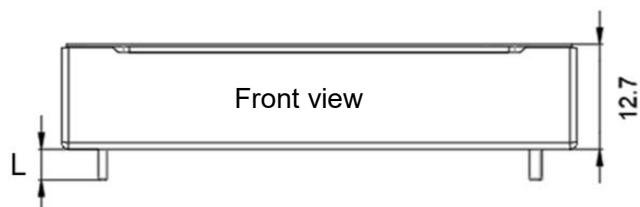
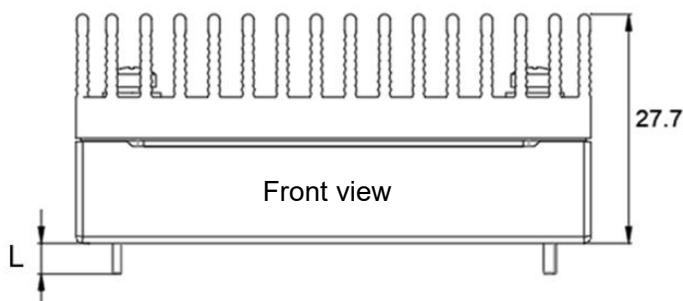

EMC Performances

EMI	CE	EN55032-3-2	150kHz-500kHz 66dBuV	
		EN55032-2-1	500kHz-30MHz 60dBuV	
	RE	EN55032-3-2	30MHz-230MHz 50dBuV/m at 3m	
		EN55032-2-1	230MHz-1GHz 57dBuV/m at 3m	
EMS	ESD	IEC/EN61000-4-2	Contact $\pm 6\text{KV}$ /Air $\pm 8\text{KV}$	perf. Criteria B
	RS	IEC/EN61000-4-3	10V/m	perf. Criteria A
	EFT	IEC/EN61000-4-4	$\pm 2\text{kV}$ 5/50ns 5kHz	perf. Criteria A
	Surge	IEC/EN61000-4-5	line to line $\pm 2\text{KV}$	perf. Criteria B
	CS	IEC/EN61000-4-6	10 Vr.m.s	perf. Criteria A

Physical Characteristics

Case materials	Metal base + plastic case in black, flame class UL94-V0
Heat sink	Dimension 61.0x39.0x15.0 mm, weight 52g, aluminum, anodized black
Cooling method	Conduction cooling or forced air cooling
Unit weight	Standard 72g, with heatsink 125g



Product Characteristics Graphs





Note:

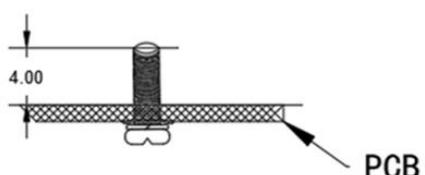
1. The output power and the efficiency in the graphs have been tested with typical values.
2. The data in temperature derating graph has been tested under Aipu laboratory test conditions. It is recommended to keep the temperature of the Metal Base not more than 100 °C when the converter operates at the rated load for the application.

Mechanical Dimensions and Pin-Out Function Description

Recommended PCB holes size

Standard+Heatsink
61.0x39.0x27.7mmStandard
60.4x39.0x12.7mm

Note:

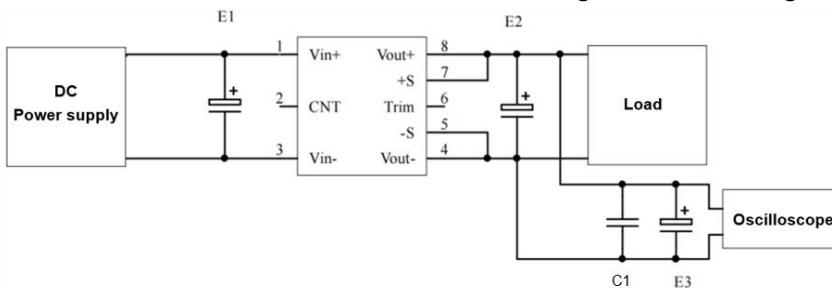

Unit: mm

Pin 1,2,3,5,6,7 diameter: 1.00

Pin 4,8 diameter: 1.50

Tolerance: X.X \pm 0.50mm, X.XX \pm 0.10mm

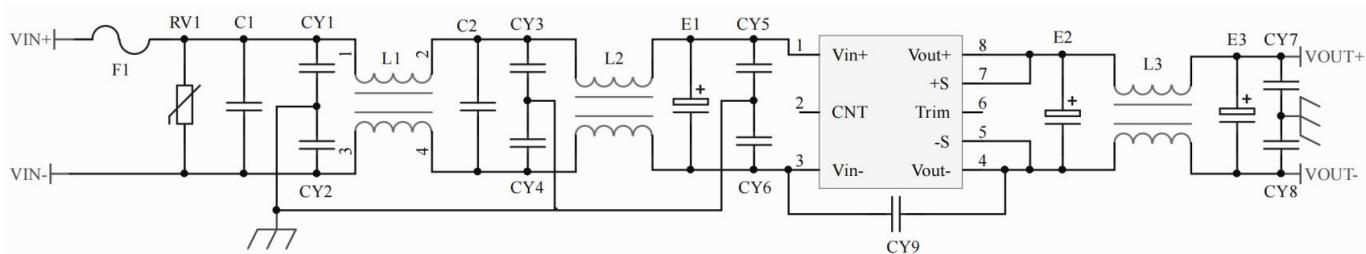
Screwing torque: 0.4N.m Max



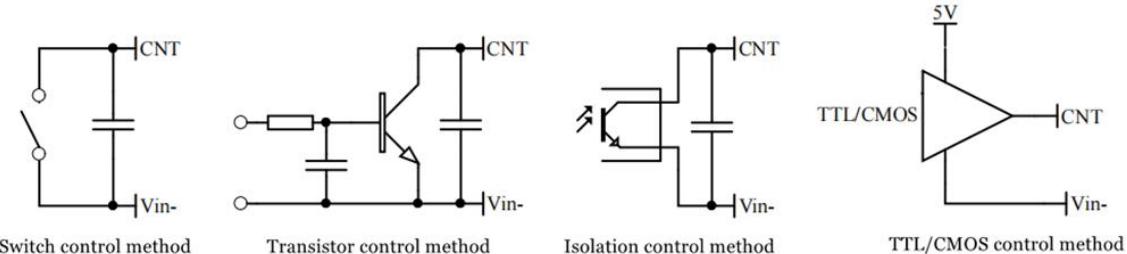
Pin Length L=3.7mm

Pin No.	1	2	3	4	5	6	7	8
Function	Vin+	CNT	Vin-	Vout-	-S	TRIM	+S	Vout+
Description	Input V+	ON/OFF Control	Input V-	Output V-	Output distal end compensation S-	Output Voltage Trim	Output distal end compensation S+	Output V+

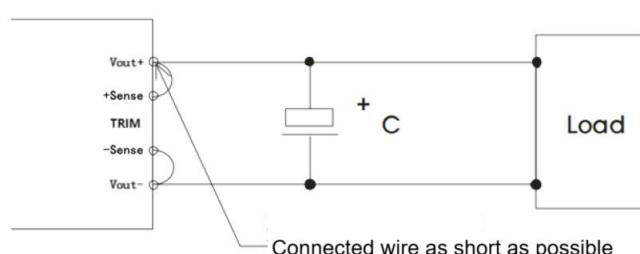
Recommended circuits for application


1. All this series of converters will be tested according to the circuit diagram below before shipping.

Capacitance Output Volt.	E1 (μF)	E2 (μF)	C1 (μF)	E3 (μF)
3.3VDC		1000		
5VDC		680		
12VDC	100			
.....		470		
48VDC			1	
.....		68		
110VDC		68		10

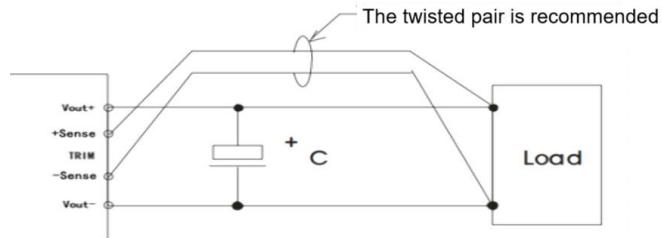

2. Typical application circuit

If this circuit recommended is not adopted, please connect an electrolytic capacitor $\geq 100 \mu\text{F}$ in parallel at the input to suppress the possible surge voltage.


F1	T15A/250V Time-delay fuse
RV1	14D 100V Varistor
C1, C2	105/100V Polyester Film Capacitor
CY1, CY2, CY3, CY4, CY5, CY6	102/250Vac Y2 capacitors
CY7, CY8	103/2KV Ceramic SMD Capacitor
CY9	471/250Vac Y1 capacitor
E1	220μF/100V Electrolytic Capacitor
E2, E3	220μF/63V Electrolytic Capacitors
L1, L2	>1mH, temperature rise less than 25°@11A
L3	>220uH, temperature rise less than 25°K@3.5A

3. ON/OFF control (CNT) application

4. Application for Sense

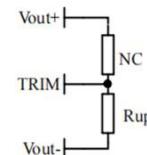

1) With NO distal end compensation

Notes:

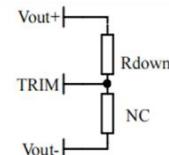
1. Vout+ & Sense+, Vout- & Sense- should be shorted when distal compensation is not needed
2. The lead wire between Vout+ and Sense+, Vout- and Sense- should be as short as possible, and close to the pins, or else the output may be unstable.

2) With distal end compensation

Notes:


1. The output voltage may be unstable if the compensation cables are too long.
2. The Twisted pair or shielded cables are recommended, the cable length should be as short as possible.
3. Wide copper path on PCB or thick lead wires between the power supply and the load should be used to achieve the line voltage drop <0.3V. The target is to keep output voltage within the specified range.
4. The leads wire resistance may create the output voltage oscillation or larger ripples. Please verify it before to use.

5. TRIM & TRIM resistance calculation


The calculation of ΔU and R_{up} & R_{down} :

$$R_{up}=107.5/\Delta U-5.1(K\Omega)$$

$$R_{down}=43*(48-2.5-\Delta U)/\Delta U-5.1(K\Omega)$$

Voltage-up: Add R_{up} between Trim and Vout-

Voltage-down: Add R_{down} between Trim and Vout+

6. This converter is not available to be used in parallel to increase the output power. Please contact Aipu technician for this kind of requirement.

Others

1. The product warranty period is two years. The failed product can be repaired/replaced free of charge if it operates at normal condition. A paid service shall be also provided if the product fails after operating under wrong or unreasonable conditions.
2. Aipupower can provide customization design and filter modules for matching, please contact our technician for details.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com